CPU Performance Scaling¶
- Copyright
© 2017 Intel Corporation
- Author
Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Concept of CPU Performance Scaling¶
The majority of modern processors are capable of operating in a number of different clock frequency and voltage configurations, often referred to as Operating Performance Points or P-states (in ACPI terminology). As a rule, the higher the clock frequency and the higher the voltage, the more instructions can be retired by the CPU over a unit of time, but also the higher the clock frequency and the higher the voltage, the more energy is consumed over a unit of time (or the more power is drawn) by the CPU in the given P-state. Therefore there is a natural tradeoff between the CPU capacity (the number of instructions that can be executed over a unit of time) and the power drawn by the CPU.
In some situations it is desirable or even necessary to run the program as fast as possible and then there is no reason to use any P-states different from the highest one (i.e. the highest-performance frequency/voltage configuration available). In some other cases, however, it may not be necessary to execute instructions so quickly and maintaining the highest available CPU capacity for a relatively long time without utilizing it entirely may be regarded as wasteful. It also may not be physically possible to maintain maximum CPU capacity for too long for thermal or power supply capacity reasons or similar. To cover those cases, there are hardware interfaces allowing CPUs to be switched between different frequency/voltage configurations or (in the ACPI terminology) to be put into different P-states.
Typically, they are used along with algorithms to estimate the required CPU capacity, so as to decide which P-states to put the CPUs into. Of course, since the utilization of the system generally changes over time, that has to be done repeatedly on a regular basis. The activity by which this happens is referred to as CPU performance scaling or CPU frequency scaling (because it involves adjusting the CPU clock frequency).
CPU Performance Scaling in Linux¶
The Linux kernel supports CPU performance scaling by means of the CPUFreq
(CPU Frequency scaling) subsystem that consists of three layers of code: the
core, scaling governors and scaling drivers.
The CPUFreq
core provides the common code infrastructure and user space
interfaces for all platforms that support CPU performance scaling. It defines
the basic framework in which the other components operate.
Scaling governors implement algorithms to estimate the required CPU capacity. As a rule, each governor implements one, possibly parametrized, scaling algorithm.
Scaling drivers talk to the hardware. They provide scaling governors with information on the available P-states (or P-state ranges in some cases) and access platform-specific hardware interfaces to change CPU P-states as requested by scaling governors.
In principle, all available scaling governors can be used with every scaling driver. That design is based on the observation that the information used by performance scaling algorithms for P-state selection can be represented in a platform-independent form in the majority of cases, so it should be possible to use the same performance scaling algorithm implemented in exactly the same way regardless of which scaling driver is used. Consequently, the same set of scaling governors should be suitable for every supported platform.
However, that observation may not hold for performance scaling algorithms
based on information provided by the hardware itself, for example through
feedback registers, as that information is typically specific to the hardware
interface it comes from and may not be easily represented in an abstract,
platform-independent way. For this reason, CPUFreq
allows scaling drivers
to bypass the governor layer and implement their own performance scaling
algorithms. That is done by the intel_pstate scaling driver.
CPUFreq
Policy Objects¶
In some cases the hardware interface for P-state control is shared by multiple CPUs. That is, for example, the same register (or set of registers) is used to control the P-state of multiple CPUs at the same time and writing to it affects all of those CPUs simultaneously.
Sets of CPUs sharing hardware P-state control interfaces are represented by
CPUFreq
as struct cpufreq_policy
objects. For consistency,
struct cpufreq_policy
is also used when there is only one CPU in the given
set.
The CPUFreq
core maintains a pointer to a struct cpufreq_policy
object for
every CPU in the system, including CPUs that are currently offline. If multiple
CPUs share the same hardware P-state control interface, all of the pointers
corresponding to them point to the same struct cpufreq_policy
object.
CPUFreq
uses struct cpufreq_policy
as its basic data type and the design
of its user space interface is based on the policy concept.
CPU Initialization¶
First of all, a scaling driver has to be registered for CPUFreq
to work.
It is only possible to register one scaling driver at a time, so the scaling
driver is expected to be able to handle all CPUs in the system.
The scaling driver may be registered before or after CPU registration. If
CPUs are registered earlier, the driver core invokes the CPUFreq
core to
take a note of all of the already registered CPUs during the registration of the
scaling driver. In turn, if any CPUs are registered after the registration of
the scaling driver, the CPUFreq
core will be invoked to take note of them
at their registration time.
In any case, the CPUFreq
core is invoked to take note of any logical CPU it
has not seen so far as soon as it is ready to handle that CPU. [Note that the
logical CPU may be a physical single-core processor, or a single core in a
multicore processor, or a hardware thread in a physical processor or processor
core. In what follows “CPU” always means “logical CPU” unless explicitly stated
otherwise and the word “processor” is used to refer to the physical part
possibly including multiple logical CPUs.]
Once invoked, the CPUFreq
core checks if the policy pointer is already set
for the given CPU and if so, it skips the policy object creation. Otherwise,
a new policy object is created and initialized, which involves the creation of
a new policy directory in sysfs
, and the policy pointer corresponding to
the given CPU is set to the new policy object’s address in memory.
Next, the scaling driver’s ->init()
callback is invoked with the policy
pointer of the new CPU passed to it as the argument. That callback is expected
to initialize the performance scaling hardware interface for the given CPU (or,
more precisely, for the set of CPUs sharing the hardware interface it belongs
to, represented by its policy object) and, if the policy object it has been
called for is new, to set parameters of the policy, like the minimum and maximum
frequencies supported by the hardware, the table of available frequencies (if
the set of supported P-states is not a continuous range), and the mask of CPUs
that belong to the same policy (including both online and offline CPUs). That
mask is then used by the core to populate the policy pointers for all of the
CPUs in it.
The next major initialization step for a new policy object is to attach a
scaling governor to it (to begin with, that is the default scaling governor
determined by the kernel configuration, but it may be changed later
via sysfs
). First, a pointer to the new policy object is passed to the
governor’s ->init()
callback which is expected to initialize all of the
data structures necessary to handle the given policy and, possibly, to add
a governor sysfs
interface to it. Next, the governor is started by
invoking its ->start()
callback.
That callback is expected to register per-CPU utilization update callbacks for all of the online CPUs belonging to the given policy with the CPU scheduler. The utilization update callbacks will be invoked by the CPU scheduler on important events, like task enqueue and dequeue, on every iteration of the scheduler tick or generally whenever the CPU utilization may change (from the scheduler’s perspective). They are expected to carry out computations needed to determine the P-state to use for the given policy going forward and to invoke the scaling driver to make changes to the hardware in accordance with the P-state selection. The scaling driver may be invoked directly from scheduler context or asynchronously, via a kernel thread or workqueue, depending on the configuration and capabilities of the scaling driver and the governor.
Similar steps are taken for policy objects that are not new, but were “inactive”
previously, meaning that all of the CPUs belonging to them were offline. The
only practical difference in that case is that the CPUFreq
core will attempt
to use the scaling governor previously used with the policy that became
“inactive” (and is re-initialized now) instead of the default governor.
In turn, if a previously offline CPU is being brought back online, but some
other CPUs sharing the policy object with it are online already, there is no
need to re-initialize the policy object at all. In that case, it only is
necessary to restart the scaling governor so that it can take the new online CPU
into account. That is achieved by invoking the governor’s ->stop
and
->start()
callbacks, in this order, for the entire policy.
As mentioned before, the intel_pstate scaling driver bypasses the scaling
governor layer of CPUFreq
and provides its own P-state selection algorithms.
Consequently, if intel_pstate is used, scaling governors are not attached to
new policy objects. Instead, the driver’s ->setpolicy()
callback is invoked
to register per-CPU utilization update callbacks for each policy. These
callbacks are invoked by the CPU scheduler in the same way as for scaling
governors, but in the intel_pstate case they both determine the P-state to
use and change the hardware configuration accordingly in one go from scheduler
context.
The policy objects created during CPU initialization and other data structures associated with them are torn down when the scaling driver is unregistered (which happens when the kernel module containing it is unloaded, for example) or when the last CPU belonging to the given policy in unregistered.
Policy Interface in sysfs
¶
During the initialization of the kernel, the CPUFreq
core creates a
sysfs
directory (kobject) called cpufreq
under
/sys/devices/system/cpu/
.
That directory contains a policyX
subdirectory (where X
represents an
integer number) for every policy object maintained by the CPUFreq
core.
Each policyX
directory is pointed to by cpufreq
symbolic links
under /sys/devices/system/cpu/cpuY/
(where Y
represents an integer
that may be different from the one represented by X
) for all of the CPUs
associated with (or belonging to) the given policy. The policyX
directories
in /sys/devices/system/cpu/cpufreq
each contain policy-specific
attributes (files) to control CPUFreq
behavior for the corresponding policy
objects (that is, for all of the CPUs associated with them).
Some of those attributes are generic. They are created by the CPUFreq
core
and their behavior generally does not depend on what scaling driver is in use
and what scaling governor is attached to the given policy. Some scaling drivers
also add driver-specific attributes to the policy directories in sysfs
to
control policy-specific aspects of driver behavior.
The generic attributes under /sys/devices/system/cpu/cpufreq/policyX/
are the following:
affected_cpus
List of online CPUs belonging to this policy (i.e. sharing the hardware performance scaling interface represented by the
policyX
policy object).bios_limit
If the platform firmware (BIOS) tells the OS to apply an upper limit to CPU frequencies, that limit will be reported through this attribute (if present).
The existence of the limit may be a result of some (often unintentional) BIOS settings, restrictions coming from a service processor or another BIOS/HW-based mechanisms.
This does not cover ACPI thermal limitations which can be discovered through a generic thermal driver.
This attribute is not present if the scaling driver in use does not support it.
cpuinfo_cur_freq
Current frequency of the CPUs belonging to this policy as obtained from the hardware (in KHz).
This is expected to be the frequency the hardware actually runs at. If that frequency cannot be determined, this attribute should not be present.
cpuinfo_max_freq
Maximum possible operating frequency the CPUs belonging to this policy can run at (in kHz).
cpuinfo_min_freq
Minimum possible operating frequency the CPUs belonging to this policy can run at (in kHz).
cpuinfo_transition_latency
The time it takes to switch the CPUs belonging to this policy from one P-state to another, in nanoseconds.
If unknown or if known to be so high that the scaling driver does not work with the ondemand governor, -1 (
CPUFREQ_ETERNAL
) will be returned by reads from this attribute.related_cpus
List of all (online and offline) CPUs belonging to this policy.
scaling_available_governors
List of
CPUFreq
scaling governors present in the kernel that can be attached to this policy or (if the intel_pstate scaling driver is in use) list of scaling algorithms provided by the driver that can be applied to this policy.[Note that some governors are modular and it may be necessary to load a kernel module for the governor held by it to become available and be listed by this attribute.]
scaling_cur_freq
Current frequency of all of the CPUs belonging to this policy (in kHz).
In the majority of cases, this is the frequency of the last P-state requested by the scaling driver from the hardware using the scaling interface provided by it, which may or may not reflect the frequency the CPU is actually running at (due to hardware design and other limitations).
Some architectures (e.g.
x86
) may attempt to provide information more precisely reflecting the current CPU frequency through this attribute, but that still may not be the exact current CPU frequency as seen by the hardware at the moment.scaling_driver
The scaling driver currently in use.
scaling_governor
The scaling governor currently attached to this policy or (if the intel_pstate scaling driver is in use) the scaling algorithm provided by the driver that is currently applied to this policy.
This attribute is read-write and writing to it will cause a new scaling governor to be attached to this policy or a new scaling algorithm provided by the scaling driver to be applied to it (in the intel_pstate case), as indicated by the string written to this attribute (which must be one of the names listed by the
scaling_available_governors
attribute described above).scaling_max_freq
Maximum frequency the CPUs belonging to this policy are allowed to be running at (in kHz).
This attribute is read-write and writing a string representing an integer to it will cause a new limit to be set (it must not be lower than the value of the
scaling_min_freq
attribute).scaling_min_freq
Minimum frequency the CPUs belonging to this policy are allowed to be running at (in kHz).
This attribute is read-write and writing a string representing a non-negative integer to it will cause a new limit to be set (it must not be higher than the value of the
scaling_max_freq
attribute).scaling_setspeed
This attribute is functional only if the userspace scaling governor is attached to the given policy.
It returns the last frequency requested by the governor (in kHz) or can be written to in order to set a new frequency for the policy.
Generic Scaling Governors¶
CPUFreq
provides generic scaling governors that can be used with all
scaling drivers. As stated before, each of them implements a single, possibly
parametrized, performance scaling algorithm.
Scaling governors are attached to policy objects and different policy objects can be handled by different scaling governors at the same time (although that may lead to suboptimal results in some cases).
The scaling governor for a given policy object can be changed at any time with
the help of the scaling_governor
policy attribute in sysfs
.
Some governors expose sysfs
attributes to control or fine-tune the scaling
algorithms implemented by them. Those attributes, referred to as governor
tunables, can be either global (system-wide) or per-policy, depending on the
scaling driver in use. If the driver requires governor tunables to be
per-policy, they are located in a subdirectory of each policy directory.
Otherwise, they are located in a subdirectory under
/sys/devices/system/cpu/cpufreq/
. In either case the name of the
subdirectory containing the governor tunables is the name of the governor
providing them.
performance
¶
When attached to a policy object, this governor causes the highest frequency,
within the scaling_max_freq
policy limit, to be requested for that policy.
The request is made once at that time the governor for the policy is set to
performance
and whenever the scaling_max_freq
or scaling_min_freq
policy limits change after that.
powersave
¶
When attached to a policy object, this governor causes the lowest frequency,
within the scaling_min_freq
policy limit, to be requested for that policy.
The request is made once at that time the governor for the policy is set to
powersave
and whenever the scaling_max_freq
or scaling_min_freq
policy limits change after that.
userspace
¶
This governor does not do anything by itself. Instead, it allows user space
to set the CPU frequency for the policy it is attached to by writing to the
scaling_setspeed
attribute of that policy.
schedutil
¶
This governor uses CPU utilization data available from the CPU scheduler. It generally is regarded as a part of the CPU scheduler, so it can access the scheduler’s internal data structures directly.
It runs entirely in scheduler context, although in some cases it may need to invoke the scaling driver asynchronously when it decides that the CPU frequency should be changed for a given policy (that depends on whether or not the driver is capable of changing the CPU frequency from scheduler context).
The actions of this governor for a particular CPU depend on the scheduling class
invoking its utilization update callback for that CPU. If it is invoked by the
RT or deadline scheduling classes, the governor will increase the frequency to
the allowed maximum (that is, the scaling_max_freq
policy limit). In turn,
if it is invoked by the CFS scheduling class, the governor will use the
Per-Entity Load Tracking (PELT) metric for the root control group of the
given CPU as the CPU utilization estimate (see the Per-entity load tracking
LWN.net article 1 for a description of the PELT mechanism). Then, the new
CPU frequency to apply is computed in accordance with the formula
f = 1.25 *
f_0
*util
/max
where util
is the PELT number, max
is the theoretical maximum of
util
, and f_0
is either the maximum possible CPU frequency for the given
policy (if the PELT number is frequency-invariant), or the current CPU frequency
(otherwise).
This governor also employs a mechanism allowing it to temporarily bump up the
CPU frequency for tasks that have been waiting on I/O most recently, called
“IO-wait boosting”. That happens when the SCHED_CPUFREQ_IOWAIT
flag
is passed by the scheduler to the governor callback which causes the frequency
to go up to the allowed maximum immediately and then draw back to the value
returned by the above formula over time.
This governor exposes only one tunable:
rate_limit_us
Minimum time (in microseconds) that has to pass between two consecutive runs of governor computations (default: 1000 times the scaling driver’s transition latency).
The purpose of this tunable is to reduce the scheduler context overhead of the governor which might be excessive without it.
This governor generally is regarded as a replacement for the older ondemand and conservative governors (described below), as it is simpler and more tightly integrated with the CPU scheduler, its overhead in terms of CPU context switches and similar is less significant, and it uses the scheduler’s own CPU utilization metric, so in principle its decisions should not contradict the decisions made by the other parts of the scheduler.
ondemand
¶
This governor uses CPU load as a CPU frequency selection metric.
In order to estimate the current CPU load, it measures the time elapsed between consecutive invocations of its worker routine and computes the fraction of that time in which the given CPU was not idle. The ratio of the non-idle (active) time to the total CPU time is taken as an estimate of the load.
If this governor is attached to a policy shared by multiple CPUs, the load is estimated for all of them and the greatest result is taken as the load estimate for the entire policy.
The worker routine of this governor has to run in process context, so it is invoked asynchronously (via a workqueue) and CPU P-states are updated from there if necessary. As a result, the scheduler context overhead from this governor is minimum, but it causes additional CPU context switches to happen relatively often and the CPU P-state updates triggered by it can be relatively irregular. Also, it affects its own CPU load metric by running code that reduces the CPU idle time (even though the CPU idle time is only reduced very slightly by it).
It generally selects CPU frequencies proportional to the estimated load, so that
the value of the cpuinfo_max_freq
policy attribute corresponds to the load of
1 (or 100%), and the value of the cpuinfo_min_freq
policy attribute
corresponds to the load of 0, unless when the load exceeds a (configurable)
speedup threshold, in which case it will go straight for the highest frequency
it is allowed to use (the scaling_max_freq
policy limit).
This governor exposes the following tunables:
sampling_rate
This is how often the governor’s worker routine should run, in microseconds.
Typically, it is set to values of the order of 10000 (10 ms). Its default value is equal to the value of
cpuinfo_transition_latency
for each policy this governor is attached to (but since the unit here is greater by 1000, this means that the time represented bysampling_rate
is 1000 times greater than the transition latency by default).If this tunable is per-policy, the following shell command sets the time represented by it to be 750 times as high as the transition latency:
# echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate
up_threshold
If the estimated CPU load is above this value (in percent), the governor will set the frequency to the maximum value allowed for the policy. Otherwise, the selected frequency will be proportional to the estimated CPU load.
ignore_nice_load
If set to 1 (default 0), it will cause the CPU load estimation code to treat the CPU time spent on executing tasks with “nice” levels greater than 0 as CPU idle time.
This may be useful if there are tasks in the system that should not be taken into account when deciding what frequency to run the CPUs at. Then, to make that happen it is sufficient to increase the “nice” level of those tasks above 0 and set this attribute to 1.
sampling_down_factor
Temporary multiplier, between 1 (default) and 100 inclusive, to apply to the
sampling_rate
value if the CPU load goes aboveup_threshold
.This causes the next execution of the governor’s worker routine (after setting the frequency to the allowed maximum) to be delayed, so the frequency stays at the maximum level for a longer time.
Frequency fluctuations in some bursty workloads may be avoided this way at the cost of additional energy spent on maintaining the maximum CPU capacity.
powersave_bias
Reduction factor to apply to the original frequency target of the governor (including the maximum value used when the
up_threshold
value is exceeded by the estimated CPU load) or sensitivity threshold for the AMD frequency sensitivity powersave bias driver (drivers/cpufreq/amd_freq_sensitivity.c
), between 0 and 1000 inclusive.If the AMD frequency sensitivity powersave bias driver is not loaded, the effective frequency to apply is given by
f * (1 -
powersave_bias
/ 1000)where f is the governor’s original frequency target. The default value of this attribute is 0 in that case.
If the AMD frequency sensitivity powersave bias driver is loaded, the value of this attribute is 400 by default and it is used in a different way.
On Family 16h (and later) AMD processors there is a mechanism to get a measured workload sensitivity, between 0 and 100% inclusive, from the hardware. That value can be used to estimate how the performance of the workload running on a CPU will change in response to frequency changes.
The performance of a workload with the sensitivity of 0 (memory-bound or IO-bound) is not expected to increase at all as a result of increasing the CPU frequency, whereas workloads with the sensitivity of 100% (CPU-bound) are expected to perform much better if the CPU frequency is increased.
If the workload sensitivity is less than the threshold represented by the
powersave_bias
value, the sensitivity powersave bias driver will cause the governor to select a frequency lower than its original target, so as to avoid over-provisioning workloads that will not benefit from running at higher CPU frequencies.
conservative
¶
This governor uses CPU load as a CPU frequency selection metric.
It estimates the CPU load in the same way as the ondemand governor described above, but the CPU frequency selection algorithm implemented by it is different.
Namely, it avoids changing the frequency significantly over short time intervals which may not be suitable for systems with limited power supply capacity (e.g. battery-powered). To achieve that, it changes the frequency in relatively small steps, one step at a time, up or down - depending on whether or not a (configurable) threshold has been exceeded by the estimated CPU load.
This governor exposes the following tunables:
freq_step
Frequency step in percent of the maximum frequency the governor is allowed to set (the
scaling_max_freq
policy limit), between 0 and 100 (5 by default).This is how much the frequency is allowed to change in one go. Setting it to 0 will cause the default frequency step (5 percent) to be used and setting it to 100 effectively causes the governor to periodically switch the frequency between the
scaling_min_freq
andscaling_max_freq
policy limits.down_threshold
Threshold value (in percent, 20 by default) used to determine the frequency change direction.
If the estimated CPU load is greater than this value, the frequency will go up (by
freq_step
). If the load is less than this value (and thesampling_down_factor
mechanism is not in effect), the frequency will go down. Otherwise, the frequency will not be changed.sampling_down_factor
Frequency decrease deferral factor, between 1 (default) and 10 inclusive.
It effectively causes the frequency to go down
sampling_down_factor
times slower than it ramps up.
Frequency Boost Support¶
Background¶
Some processors support a mechanism to raise the operating frequency of some cores in a multicore package temporarily (and above the sustainable frequency threshold for the whole package) under certain conditions, for example if the whole chip is not fully utilized and below its intended thermal or power budget.
Different names are used by different vendors to refer to this functionality. For Intel processors it is referred to as “Turbo Boost”, AMD calls it “Turbo-Core” or (in technical documentation) “Core Performance Boost” and so on. As a rule, it also is implemented differently by different vendors. The simple term “frequency boost” is used here for brevity to refer to all of those implementations.
The frequency boost mechanism may be either hardware-based or software-based. If it is hardware-based (e.g. on x86), the decision to trigger the boosting is made by the hardware (although in general it requires the hardware to be put into a special state in which it can control the CPU frequency within certain limits). If it is software-based (e.g. on ARM), the scaling driver decides whether or not to trigger boosting and when to do that.
The boost
File in sysfs
¶
This file is located under /sys/devices/system/cpu/cpufreq/
and controls
the “boost” setting for the whole system. It is not present if the underlying
scaling driver does not support the frequency boost mechanism (or supports it,
but provides a driver-specific interface for controlling it, like
intel_pstate).
If the value in this file is 1, the frequency boost mechanism is enabled. This means that either the hardware can be put into states in which it is able to trigger boosting (in the hardware-based case), or the software is allowed to trigger boosting (in the software-based case). It does not mean that boosting is actually in use at the moment on any CPUs in the system. It only means a permission to use the frequency boost mechanism (which still may never be used for other reasons).
If the value in this file is 0, the frequency boost mechanism is disabled and cannot be used at all.
The only values that can be written to this file are 0 and 1.
Rationale for Boost Control Knob¶
The frequency boost mechanism is generally intended to help to achieve optimum CPU performance on time scales below software resolution (e.g. below the scheduler tick interval) and it is demonstrably suitable for many workloads, but it may lead to problems in certain situations.
For this reason, many systems make it possible to disable the frequency boost mechanism in the platform firmware (BIOS) setup, but that requires the system to be restarted for the setting to be adjusted as desired, which may not be practical at least in some cases. For example:
Boosting means overclocking the processor, although under controlled conditions. Generally, the processor’s energy consumption increases as a result of increasing its frequency and voltage, even temporarily. That may not be desirable on systems that switch to power sources of limited capacity, such as batteries, so the ability to disable the boost mechanism while the system is running may help there (but that depends on the workload too).
In some situations deterministic behavior is more important than performance or energy consumption (or both) and the ability to disable boosting while the system is running may be useful then.
To examine the impact of the frequency boost mechanism itself, it is useful to be able to run tests with and without boosting, preferably without restarting the system in the meantime.
Reproducible results are important when running benchmarks. Since the boosting functionality depends on the load of the whole package, single-thread performance may vary because of it which may lead to unreproducible results sometimes. That can be avoided by disabling the frequency boost mechanism before running benchmarks sensitive to that issue.
Legacy AMD cpb
Knob¶
The AMD powernow-k8 scaling driver supports a sysfs
knob very similar to
the global boost
one. It is used for disabling/enabling the “Core
Performance Boost” feature of some AMD processors.
If present, that knob is located in every CPUFreq
policy directory in
sysfs
(/sys/devices/system/cpu/cpufreq/policyX/
) and is called
cpb
, which indicates a more fine grained control interface. The actual
implementation, however, works on the system-wide basis and setting that knob
for one policy causes the same value of it to be set for all of the other
policies at the same time.
That knob is still supported on AMD processors that support its underlying
hardware feature, but it may be configured out of the kernel (via the
CONFIG_X86_ACPI_CPUFREQ_CPB
configuration option) and the global
boost
knob is present regardless. Thus it is always possible use the
boost
knob instead of the cpb
one which is highly recommended, as that
is more consistent with what all of the other systems do (and the cpb
knob
may not be supported any more in the future).
The cpb
knob is never present for any processors without the underlying
hardware feature (e.g. all Intel ones), even if the
CONFIG_X86_ACPI_CPUFREQ_CPB
configuration option is set.
References¶
- 1
Jonathan Corbet, Per-entity load tracking, https://lwn.net/Articles/531853/